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Abstract

We propose a method to improve Visual Question
Answering (VQA) with Retrieval-Augmented Generation
(RAG) by introducing text-grounded object localization.
Rather than retrieving information based on the entire im-
age, our approach enables the model to generate a bound-
ing box around the object most relevant to the question, al-
lowing for targeted image cropping and focused retrieval.
This reduces background noise, improves alignment be-
tween visual and textual cues, and helps mitigate halluci-
nations. Our RAG method enhances context-aware VQA
responses increased the accuracy from 22.19% to 25.64%,
with an absolute increase of 3.45 percentage points, com-
pared to the baseline Llama-3.2-Vision-11B agent. We also
proposed a de-hallucination method based on question type
which can effectively reduce the hallucination rate from
65.79% to 19.14% and improves the truthfulness score.

1. Introduction

Visual Question Answering (VQA) [1] sits at the in-
tersection of computer vision and natural language pro-
cessing, requiring systems to reason over both images and
text to produce meaningful answers. Recent advances in
Vision-Language Models (VLMs) [6] have significantly en-
hanced the ability of machines to jointly understand visual
and linguistic content, enabling more accurate and context-
aware interpretations of complex visual scenes. However,
these models are inherently limited by the knowledge en-
coded in their training data. To address this, Retrieval-
Augmented Generation (RAG) [[11] introduces an external
knowledge retrieval step that grounds model outputs in up-
to-date or domain-specific information, bridging the gap be-
tween perception and world knowledge. The combination
of VLMs with RAG is particularly important for VQA, as
it allows systems not only to interpret what they see, but
also to reason with additional contextual or factual infor-
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mation—ultimately leading to more robust, informed, and
trustworthy responses. In this paper we investigate methods
that can improve VQA performance.

A core challenge in combining VQA with RAG lies in
identifying and retrieving external knowledge that is simul-
taneously relevant to both the textual query and the visual
content. Unlike pure text-based RAG, where the query
alone guides document selection, multimodal RAG must
interpret features from an image—objects, scenes, spatial
relationships—and align them with the user’s question to
construct a precise retrieval request. For example, when
give the question "How much does this cost?”” and an image
of users holding one object in hand, while the background
contains multiple other objects, the VLM must be able to
understand which object is the question referring to in order
to perform effective informational retrieval. If the retrieval
system focuses too narrowly on one modality (e.g., only on
keywords in the text), it risks ignoring critical visual cues;
conversely, overemphasizing visual attributes may surface
facts that have little bearing on the question’s intent. More-
over, the retrieved facts must be filtered and integrated in
a way that respects the visual context—misaligned or tan-
gential information can lead to confident but incorrect an-
swers. Balancing these two streams of information to sur-
face grounded, image-aware knowledge is therefore a deli-
cate orchestration that remains an open research frontier in
multimodal language understanding.

Furthermore, dehallucinating VLM is critical to ensur-
ing the reliability and safety of their outputs, especially
in applications like VQA where users may rely on re-
sponses for decision-making. VLMs, like their language-
only counterparts, are prone to hallucination—generating
plausible but factually incorrect or visually inconsistent an-
swers—when they lack sufficient understanding or context.
This issue is exacerbated when VLMs must reason about
complex scenes or incorporate external knowledge, as they
may confidently assert false claims not supported by the im-
age or retrieved content. For the example provided by the
previous section, a better answer is I don’t know” rather



than responding with wrong price for the wrong object.

2. Related Work

Improving VQA has been a dynamic area of research,
with recent efforts focusing on enhancing the gorunding
of visual and textual information. GLIP [13]] (Grounded
Language-Image Pre-training) is a unified vision-language
architecture designed to bridge object detection and phrase
grounding by reformulating object detection as a vision-
language matching task. The core idea is to align image
regions (bounding boxes) with phrases from a natural lan-
guage prompt, enabling the model to detect and ground
objects based on open-vocabulary textual queries rather
than a fixed set of class labels. GLIP handles both ob-
ject detection and phrase grounding with a single archi-
tecture allowing the model to localize objects of interest
that can best answer a given question prompt. Similarly,
Grounding DINO [16]] tightly integrates language and vi-
sion to enable detection and localization of arbitrary ob-
jects specified by natural language prompts, rather than
being limited to a fixed set of classes. Its architecture
features dual backbones for image and text, a feature en-
hancer module that deeply fuses visual and linguistic fea-
tures via cross-attention, a language-guided query selec-
tion mechanism that dynamically chooses relevant image
regions based on the prompt, and a cross-modality decoder
that refines predictions by alternating attention between im-
age and text features. Grounding DINO is designed to han-
dle referring expressions in text prompts—including pro-
nouns like it"—as part of its referring expression compre-
hension (REC) capability. The model can localize and iden-
tify specific objects or regions within an image based on a
given textual description, which may include coreferences
such as it” if the context in the prompt is clear enough for
the model to resolve what ”it” refers to, which is crucial
for targeted retrieval augmentation for VQA. The ’Chain-
of-Spot” [[7] introduces a novel and efficient approach to
enhancing the visual reasoning capabilities of large vision-
language models (LVLMs) through an interactive reason-
ing process. What sets Chain-of-Spot apart is its focus on
dynamically identifying and attending to key regions of in-
terest (ROI) within an image that are most relevant to the
posed question or instruction, rather than processing the en-
tire image at a fixed (often low) resolution. This is achieved
by prompting the model to first localize the critical region in
response to a query, cropping or zooming in on that region,
and then generating the answer based on both the original
and the focused image. This interactive, multi-step proce-
dure allows the model to access more detailed and multi-
granularity visual features without increasing the computa-
tional cost associated with higher-resolution processing.

Visual grounding aims to localize the image region re-
ferred to by a given language expression. Methodologies

in this field have evolved from multi-modal fusion over a
fixed set of detected objects to direct bounding-box predic-
tion with open-vocabulary capabilities. Early approaches
integrated object-level visual features into textual repre-
sentations to enhance generic VQA performance (e.g., via
object-text fusion strategies [4]). Later work introduced
more structured two-stage pipelines: for instance, a “Lo-
cate Then Generate” framework first predicts the relevant
scene-text region and then generates the answer from the
cropped area [24]. Recent efforts extend this paradigm to
the video domain, where grounding scene-text temporally
across frames proves beneficial for text-based video QA
[21].



3. Data

We analyzed a VQA dataset collected from Meta Ray-
Ban smart glasses [3], which contains both single-turn and
multi-turn image-question-answer pairs across 14 diverse
domains, including shopping, food, and science. Used for
evaluation of our work, this dataset presents a significant
challenge due to its varying image quality and ambiguous
questions, requiring models to extract the most relevant in-
formation from noisy inputs. For instance, consider an im-
age showing several cars near buildings. Performing im-
age retrieval directly on the full image would likely yield
results focused on street scenes or buildings, since large
background elements tend to dominate the image. There-
fore, if the question is “How many passengers can the red
car seat?”, a retrieval system unaware of the object of in-
terest will fail to provide accurate information (see figure

The dataset features a variety of question types, such as
color, counting, location, object recognition, reasoning, and
yes/no queries. According to the distribution of question
types in the v2 dataset (see Figure [I0b), object recognition
questions constitute the largest portion. This skew towards
object recognition highlights the need for models to pos-
sess strong, text-grounded visual understanding, and some-
times be able to localize the object of interest among multi-
ple other objects in the background based on the input text.

(b) Retrieved image doesn’t
match the object in question

(a) Input image and region
of interest

Figure 1: Example image retrivel without text grounding

3.1. Image Search API

We are utilizing a prebuilt image search API provided by
Meta [10], which contains a database of images and asso-
ciated metadata for 900K items. We noticed that knowing
region of interest is crucial to RAG to find useful informa-
tion as the image search would return very different results
for the aforementioned example. The unrelated information
retrieved does not help the model answer the question, and

Number of Questions per Type
1113

1000

~
v
=)

u
=3
=)

337

N
1%
o

—

o

o

129 160

Number of Questions

o

S ) N
&

Question Type

(a) Question-type count

may even promote hallucination, as demonstrated later in
the Results section 5] Listing2]shows using the image from
the previous section would result in completely useless in-
formation retrieval when user question actually cares about
the car parked on the street rather than the street itself.
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Listing 1: Example Image Search Result Using Cropped
Region Of Interest
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Listing 2: Example Image Search Without Knowing Region
Of Interest

3.2. Training Data for Bounding Box Detection

We use the Toloka Visual Question Answering Bench-
mark (WSDMCup2023) dataset by [18] for training to de-
tect the location of bounding box, which can be used for
cropping image to improve the image search results used in
the RAG system. The dataset provides a corpus of 45,799
image—question pairs, each annotated with a ground-truth
bounding box that localizes the visual answer to the corre-
sponding natural language question.

Below is a representative examples from the training set,
shown with the question in Table [I] The bounding box is
rendered here, which corresponds to the coordinates given.



Question: What do we use to support the immune system

and get vitamin C?

Table 1: Example question with corresponding bounding
box rendered in the image

4. Methods

To address the problem discussed previously, we ex-
plored extending the capabilities of the existing VLM by
introducing two key functionalities: (1) localizing the re-
gion of interest (ROI), and (2) de-hallucinating uncertain
answers. These enhancements are aimed at improving the
robustness and accuracy of our RAG agent.

Our main system design follows a Retrieval-Augmented
Generation (RAG) framework composed of the following
components:

* Vision-Language Model (VLM): We experimented
with several models including BLIP, QWen, and
LLaMA 3.2, ultimately selecting LLaMA 3.2 for its
performance and compatibility.

* Region of Interest Proposer: A module responsible
for identifying the object or region most relevant to an-
swering the question.

¢ Image-Based Information Retriever: Performs web-
based or local database search using cropped image re-
gions as queries.

In addition, we fine-tune the VLM to reduce hallucina-
tion in uncertain scenarios. As discussed in the Results sec-
tion, hallucination remains a significant bottleneck to over-
all performance.

While each module—the VLM, ROI proposer, and re-
triever—can be individually improved, our current focus is
on enhancing the Region of Interest Proposer. Preliminary
results show that models often generate irrelevant answers
based on distracting background elements. Improving ob-
ject localization is therefore a promising direction. Future
work may explore optimization of the VLM and retriever
components.

4.1. Localizing Region of Interest

We reformulate visual understanding as a text-guided ob-
ject localization problem [14]]. Given a question, the model
is tasked with identifying the most relevant object by out-
putting a bounding box around it. This localized ROl is then
used to crop the image, reducing background noise and en-
abling a more focused retrieval process. The retrieved con-
tent is passed back to the model to generate the final answer
(see Figure[3). We explore different approaches to make our
RAG agent region-aware:

4.1.1 Fine-tuning the Language Head

Inspired by recent trends where downstream tasks are
framed as natural language generation, we formulate
bounding box prediction as a text output task. The VLM
is trained to generate bounding box coordinates as part of
its text response. This approach is flexible and minimally
invasive, requiring no changes to the model architecture.
However, it may suffer from imprecise localization, as the
model is not explicitly optimized for numerical accuracy.
To improve geometric precision, training incorporates both
standard language modeling loss and a CIOU loss [20] on
the generated coordinates. [] shows how training dataset and
prompt are formatted.

4.1.2 Fine-tuning a Bounding Box Head

An alternative approach involves attaching a dedicated
bounding box regression head to the frozen VLM, similar
to methods proposed by [23]]. This head leverages the
final cross-attention features (last hidden layer) between vi-
sion and text modalities to produce accurate, grounded box
predictions. This design improves spatial precision by di-
rectly optimizing for localization, though it adds architec-
tural complexity and reduces generality across open-ended
queries. Training is supervised using only CIOU loss on
the predicted boxes. In this case, the ground truth label are
floating point numbers instead of strings.

4.1.3 Using a Pretrained Localizer

Although integrating a trained localization component
keeps the system self-contained, it incurs training costs
and complexity. As an alternative, we also experimented
with incorporating a pretrained localizer, such as Grounding
DINO [13]], to identify regions of interest prior to retrieval.
The cropped region is then used to perform visual search,
and the resulting information is fed back into the VLM to
answer the original question.



Prompt:

“role”: "system", “content": “You are a useful
assistant which can locate object of interest
based on a question. You must output a
bounding box for the object that contains
relevant information, normalized between 0
and 1, in the following format (x1, y1, x2, y2)
where x1<x2 and y1<y2."

“role™: “user”, “content™ “Output a bounding
coordinate for an object that best answers
this question: ‘How much is this?™

Search Results:

‘entities”: [{'entity_name": 'Toyota
Prius ', 'entity_attributes™ {
alternative_names": [Prius *, "Prius+
'], ‘production_start': ‘May 2011, *
production_end": "March 2021', "
body_style”: ‘compact MPV"..

@ Original image @

( model ‘

@ Cropped image

‘ Bounding box output:
(0.2, 0.3, 0.4, 0.5)

iy

Image Search API

Figure 3: Overview of the Retrieval-Augmented Generation (RAG) Pipeline.

Dataset:

IMAGE QUERY BOUNDING BOX

Img1 “How much is this?" “(0.2,0.4,0.35, 0.8)"
Img2 “Which company makes this?" “0.7,0.2,0.92, 0.32)"
Img3 “Where can | buy it?” “(0.22,0.24, 0.52, 0.82)"

Prompt:
“role”: “system”, “content™: “You are a useful assistant which can locate
object of interest based on a question. You must output a bounding box for
the object that contains relevant information, normalized between 0 and 1,
in the following format (x1, y1, x2, y2) where x1<x2 and y1<y2."

“role”; “user”, “content”: “Output a bounding coordinate for an object that
best answers this question: ‘How much is this?"™

Figure 4: Training the VLM to Output Text-Grounded
Bounding Boxes.

4.1.4 Multi-task Bounding Box Head

Overall Architecture Design Different from the simple
pooling of cross attention states described in we also
investigated more sophisticated bounding box regression
head design. The core idea is to extend the LLaMA 3.2
vision-language model so that, after it produces pooled vi-
sual features and text embeddings, a small fusion MLP con-
catenates these vectors and learns to regress normalized
bounding boxes directly, as shown in Figure [5] By “late-
fusing” the text vector (LLaMA 3.2 outputs) and the vision
vector, we avoid adding separate detection networks or re-
gion proposals. During training, the fusion head minimizes
a combination of generalized IoU loss, a size L1 loss, and an
IoU-guided classification loss, letting the model to “point”
at the correct object without changing LLLaMA’s core Trans-
former stacks. This keeps the final RAG pipeline simple
(only one VLM backbone) while enabling precise spatial

grounding for question-driven box prediction.

* 1. Vision Encoding: We use a lightweight vision en-
coder to extract a compact representation v € R
from each image. The current setup leverages pre-
trained transformer-based features (e.g., from Dinov2
[L7]) and serves as a skeleton design for rapid integra-
tion, with planned extensions toward richer ViT-style
embeddings in future iterations.

e 2. Text Encoding: The natural-language question is
tokenized and passed through a transformer-based text
encoder (i.e. a LLaMA 3.2 language model). Once we
obtain the final-layer hidden states for all tokens, we
apply linear projection layer then maps t € R¥ into a
lower-dimensional vector t’ € R?.

* 3. Feature Fusion: We fuse the visual vector v and
the text vector t’ via a simple MLP to obtain the joint
embedding h € RY. This baseline fusion strategy is
lightweight and extensible, with room for future up-
grades such as cross-modal attention.

¢ 4. Prediction Heads: From h, two parallel heads are
applied:

— Bounding-Box Head: A two-layer MLP fol-
lowed by a sigmoid activation outputs four values
in [0, 1]%, representing normalized box center and
size (¢, ¢y, W, h).

— Classification Head: A single linear layer pro-
duces one logit s € R, intended to estimate how
well the predicted box overlaps the ground truth.



Multi-task Loss
CLS Loss

[ GloU Loss J [ L1 Loss J

Point of Interest
Proposer
(Bounding Box Head)

Vision
Embeddings

Text
Embeddings

f, Llama-3.2-11B-Vision

Hidden States
(B*T*H)

LLm
Qutput

Figure 5: Multi-task Model Architecture

Weighted Multi-Task Loss Enhances Granularity and
Mitigates Overgeneralization When trained with only
a GIoU loss, the model can converge to predicting a sin-
gle, large bounding box that overlaps the target by roughly
40%—thereby including excessive background. To coun-
teract this, we add two complementary terms:

e Size L1 Term: Penalizes predictions whose
width/height are too large. Denote the predicted
box as b = (ém,éy,ﬁ),ﬁ) and ground truth as
b = (¢z, ¢y, w, h). We apply

Ly, = | —w| + |h—h|
This term grows whenever the model attempts to en-

large w or h beyond the true size, discouraging overly
large boxes that merely satisfy a modest IoU.

¢ JoU-Guided Classification Term: Encourages the
classification head’s logit s to reflect actual overlap
quality. Let the predicted and ground-truth boxes (in
corner format) be p and g, and define the clamped
GloU target
7 = max(0, GIoU(p, g)) € [0,1].
We then train

Las = — [t log(a(s)) + (1 —7) log(1—a(s))].

If a predicted box overlaps poorly (low GloU), the tar-
get 7 is small, and o(s) is driven down. Hence, boxes
that merely “cover” 40% of the object but include too
much background incur a low IoU target and higher
classification loss.

* GloU Term: Retains the original overlap-based objec-
tive:
LGIOU =1 - GIOU(p7 g)

Alone, this term can be satisfied by expanding the
box until a minimal overlap threshold is met; com-
bined with the other terms, it ensures precise alignment
around the object.

The total loss is

Ltotal = LGIOU + /\cls Lcls + /\size Lély

where \.js and Ai,e are constant parameters.

Effect of the Multi-task Loss Function:

e GloU alone encourages any box that overlaps
enough—often “lazy” large boxes covering ~40% of
the target.

* Adding L,, penalizes excessive width/height, so the
model must shrink the box rather than inflate it.



* Adding L. further penalizes low overlap: a large box
with only 40% IoU yields a small 7, forcing o(s) to
drop and incurring classification loss.

Together, these terms prevent overly general boxes and
drive the model toward tighter, more precise localization.
As shown in Figure [f] in an example about a bicycle, the
left prediction shows that only using GIoU loss generates
a relatively large bounding box, while the right predicted
bounding boxes are more precise, which is better for crop-
ping and downstream image search task.

Q: Where can | put my feet?
" — e

3 m—
[ Predicted Box ~ §

Q: Where can | put my feet?

(b) Weighted Multi-task
(a) GIoU Loss Only Loss

Figure 6: Comparison of Results with Different Loss Func-
tion

4.2. Finetuning to Reduce Hallucination

We also fine tuned the model to say I don’t know” in
some cases to reduce hallucination. For example, for the
following question in Table [2] Llama-3.2-Vison-11B out-
puts an incorrect answer. We can train the model to an-
swer I don’t know” for “who” type question, since this
typically requires external knowledge. We investigate the
questions based on the type shown in Figure [T0B] and then
fine tune the model to only answer the questions with high
confidence.

5. Results

We have collected baseline performance for three pop-
ular open source VLMs: BLIP (Bootstrapping Language-
Image Pre-training) , Llama 3.2 (11B) [8] and Qwen
2.5 (3B) [3], on this dataset without any information re-
trieval implemented.

5.1. Results: Training a Simple Bounding Box Re-
gression Head

We trained the bounding box regression head described
in Section [.1.2] for 4 epochs on Llama 3.2 (11B). How-
ever, the loss curve remained flat, indicating minimal learn-

ing progress. Despite experimenting with various hyper-
parameters, we observed signs of instability—likely due to
the fact that the regression head is initialized from scratch.
[7] Successful training may require careful weight initializa-
tion and constraints to ensure valid bounding box predic-
tions early on (e.g., enforcing x1 < w2, y1 < y2 to calcu-
late IOU loss). While we attempted clamping to maintain
validity, this led to vanishing gradients, preventing effective
learning and leaving the training process in a suboptimal
state.

Figure 7: Bounding Box Regression Head Training loss

5.2. Results: Fine-Tuning the Language Head

For fine-tuning the language head, we used the Unsloth
framework [2]] to perform QLoRA [9] training. The LIaMA
3.2 11B model was loaded in 4-bit quantized mode, and
LoRA adapters were applied to the language head, attention
layers, and MLP layers using o« = 16 and » = 16. This re-
sulted in approximately 52k trainable parameters, account-
ing for only 0.48% of the full 11B model. The training loss
showed a clear downward trend, indicating effective learn-
ing @ However, due to computational constraints, we had
to stop training early. Despite this limitation, the approach
appears promising and scalable with sufficient training data
and compute resources.

Figure 8: Fine-tuning Language Head Training Loss



Table 2: Evaluation record for Interaction ID 00a48

D Query Agent Response

Ground Truth Result

00a48 Who invented
this kind of

The tape measure was invented by the French tailor
Pierre-Frédéric Guillaume, who patented the first

James Chesterm. . . INCORRECT

tape? practical retractable tape measure in 1829 (prototype in

1821).

5.3. Results: Multi-task Bounding Box Head

With a cosine learning rate scheduler, the multi-task loss
decreased fast in the first hundreds of steps, and then de-
creased slowly in the following steps as shown in Figure[9]

Figure 9: Training loss over steps for Multi-task Loss

The following example in Figure[I0]shows a positive ex-
ample from the predictions that it can detect the bounding
box of the vase. There is also a negative example shown
in the Figure that the location of the bounding box is away
from the ground truth place. Due to time limitation of the
project, we did not integrate this into the RAG flow yet, and
we will experiment with RAG in the future if we have time.

Q: Where can i put my flowers Q: What does it use to breath?

[ Predicted Box
¢ =3 Ground Truth Box
> 5
~

b 4

(a) Positive Example

(b) Negative Example

Figure 10: Example of Predictions of Multi-task Bounding
Box Detector

5.4. End To End Evaluation Method

We use GPT-4o-mini as a judge, guided by three
rules: (i) a prediction is correct when it contains all key
information in the ground truth, (ii) paraphrasing is accept-
able if the meaning is unchanged, and (iii) a prediction is
incorrect if it introduces errors or omits essentials. For
each question we assign a scalar score—Perfect (1.0), Ac-
ceptable (0.5, minor non-harmful flaws), Missing (0.0, re-

fusal/“I don’t know”), or Incorrect (—1.0, wrong or irrele-
vant). A system’s Truthfulness Score is the mean of these
values across the evaluation set, yielding a range of —1 (all
wrong) to 1 (all perfect). Listing [3] shows the full prompt
for the judge.

5.5. End-to-end Performance Comparison
5.5.1 Baseline on V1 Dataset

The CRAG MM dataset has two versions, where the first
version v1 includes 1548 single turn questions, and the sec-
ond version v2 includes 1938 single turn questions. We
evaluated our baseline on v1 dataset with three different
pre-trained models: BLIP, Qwen-VL-2.5-3B and Llama-
3.2-Vision-11B. Since Llama-3.2-Vision-11B performs rel-
atively great, we use Llama-3.2-Vision-11B for our cus-
tomized solutions and evaluate only Llama-3.2-Vision-11B
on v2 dataset as baseline for our customized solutions.

Based on the results of three pretrained unmodified mod-
els on vl 1548 questions from the blip-vqa-base
model performs poorly on the real world data set with
only 3.49% accuracy. The Qwen-VL-2.5-3B and Llama-
3.2-Vision-11B perform relatively better with 18.09% and
26.23% accuracy. The Hallucination rate is relatively higher
in Llama-3.2-Vision-11B compared to Qwen-VL-2.5-3B.
As a result, Llama-3.2-Vision-11B has the highest truthful-
ness score, and Qwen-VL-2.5-3B ranks the second.

5.5.2 De-Hallucination Results on V2 Dataset

With the fine tuning strategy on question type, we can ef-
fectively enable the model to answer ~I don’t know” in the
complicated question types like reasoning to avoid hallu-
cination. As a result, we can reduce the hallucination rate
from 65.79% to 19.14%, and effectively improve the truth-
fulness score from —0.4360 to —0.0738, as shown in Table
for v2 dataset.

5.5.3 End To End Results on V2 Dataset

We evaluated our RAG agent on the new version of the
dataset using two different prompting strategies. Both
experiments use Grounding DINO (grounding-dino-tiny,
172M) for bounding box extraction instead of our internally
trained bounding box heads due to limited compute budget.



Table[6|compares the performance of the baseline model
(without RAG) against the two prompting approaches. In
the first strategy, we crop the input image using the detected
bounding box, perform a retrieval based on the cropped re-
gion, and use the retrieved information to answer the ques-
tion. In the second strategy, we follow a Chain-of-Spot-
style approach [7]]: the model first summarizes the region
of interest, then we crop the image using Grounding DINO,
and finally feed both the summary and search results back
into the model to answer the original question.

Surprisingly, using Grounding DINO alone in the first
experiment led to a nearly 5% drop in accuracy, with a
hallucination rate comparable to the baseline. In contrast,
the Chain-of-Spot-style prompting improved accuracy be-
yond the baseline, but introduced a higher hallucination rate
(5%), which ultimately lowered the overall score.

Upon analyzing outputs from different stages of our
RAG agent, we observed the following:

* When image-based information retrieval returns com-
pletely irrelevant content, it can mislead the model into
producing incorrect answers (Table [7). This limits
the effectiveness of RAG and results in performance
comparable to the baseline. In contrast, Chain-of-Spot
prompting mitigates this issue by first asking the model
to describe what it sees before incorporating retrieved
information. We hypothesize that this approach en-
courages the model to rely more confidently on its
own visual understanding than on potentially mislead-
ing external sources.

* However, Chain-of-Spot prompting can also increase
hallucination. That is, once the model identifies the
region of interest, it may become overly confident in
its predictions. As shown in Table [§] this can some-
times override correct prior knowledge, leading to con-
fidently incorrect answers. This behavior contributes
to a higher hallucination rate and lowers the overall
accuracy. This is evident given the low missing rate
and the model is less likely to output ’I don’t know”.

* Computation wise, the gounding DINO is extremely
efficient to generate bounding boxes, while the Chain-
of-Spot prompting requires the model to look at the
image twice, leading to almost double inference time.
On A100 with 80 GB VRAM using a batch size of 36,
one full evaluation on v2 dataset takes 1 hour, and on
average each batch takes 1.8 seconds. This is consis-
tent with other test-time scaling technique like Chain-
of-Thought [19]].

6. Conclusion

In summary, this work demonstrates that incorporating
text-grounded object localization into retrieval-augmented

VQA systems enables models to produce more accurate
and context-aware answers by focusing on the most relevant
image regions for each question. By leveraging Chain-of-
Spot-style prompting, our RAG agent is able to effectively
combine retrieved web content with the model’s own vi-
sual understanding. Experiments on challenging real-world
datasets show that this localization-based strategy improves
accuracy over baseline methods, though at the cost of in-
creased hallucination.

Interestingly, our de-hallucinated model, which more
frequently responds with “I don’t know,” achieves the high-
est overall score—highlighting a valuable real-world in-
sight: providing an incorrect answer can be more detrimen-
tal than admitting uncertainty. This underscores a practical
challenge of using RAG agents in safety-critical applica-
tions.

Future work could explore combining Chain-of-Spot
prompting with a fine-tuned, de-hallucinated VLM, en-
abling the agent to retain low hallucination rates while still
leveraging external information to enhance accuracy.
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Listing 3: LLM judge prompt

Table 3: Overall evaluation metrics for Llama-3.2-Vision-11B on V1 Dataset (Baseline vs. De-hallucination)

Total Total Exact Accuracy Missing Hallucination Truthfulness
Model conversations turns accuracy (%) rate rate score
(%) ’ (%) (%)
Llama-3.2-Vision-11B (Baseline) 1548 1548 0.84 26.23 13.24 60.53 —0.3430
Llama-3.2-Vision-11B (De-hallucination) 1548 1548 0.90 12.60 69.64 17.76 —0.0517

Table 4: Overall evaluation metrics for three vision—language models without RAG

Total Total Exact Accuracy Missing Hallucination Truthfulness
Model conversations turns accuracy (%) rate rate score
(%) (%) (%)
blip-vga-base 1548 1548 0.00 3.49 0.00 96.51 —0.9302
Qwen-VL-2.5-3B 1548 1548 0.78 18.09 33.72 48.19 —0.3010
Llama-3.2-Vision-11B 1548 1548 0.84 26.23 13.24 60.53 —0.3430

Table 5: Overall evaluation metrics for Llama-3.2-Vision-11B on V2 Dataset (Baseline vs. De-hallucination)

Exact Missing Hallucination

Total Total Accuracy Truthfulness
Model conversations turns accuracy (%) rate rate score
(%) ’ (%) (%)
Llama-3.2-Vision-11B (Baseline) 1938 1938 0.46 22.19 12.02 65.79 —0.4360
Llama-3.2-Vision-11B (De-hallucination) 1938 1938 0.67 11.76 69.09 19.14 —0.0738

Table 6: Overall evaluation metrics for RAG implementation

Model Total- Total ac]if;;tcy Accuracy M;ZSthg Hall‘;;l:::atlon Truthfulness
conversations turns (%) (%) (%) (%) score
Llama-3.2-Vision-11B (Baseline no RAG) 1938 1938 0.46 22.19 12.02 65.79 —0.4360
GDINO 1938 1938 0.15 17.75 16.87 65.38 —0.4763
GDINO + chain of spot 1938 1938 0.83 25.64 3.77 70.59 —0.4494
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Table 7: Model Output When Search Result Is Not Useful

Question Image Image Crop + Chain-of-Spot Baseline

Search
What is the typical Original: Search result: Search result: Response(correct):
filling of this ' Blood soup. Blood soup. The typical filling of
Chinese steamed Response(incorrect):| ROI summary: this Chinese
bun? The typical filling of | The typical filling of | steamed bun is pork.

Groundtruth: The

this Chinese
steamed bun is not
blood soup, as the
image shows a
steamed bun with a
brown filling, not a
soup.

this Chinese
steamed bun is pork.
Response(correct):
The typical filling of
this Chinese
steamed bun is pork.

typical filling is pork.
Table 8: Model Output When Chain-of-spot makes over confident outputs
Question Image Image Crop + Chain-of-Spot Baseline
Search
How old was this Original: Search result: Search result: Levi | Response(correct):
artist when he started Levi Strauss & Co. Strauss & Co. isan | Nat King Cole was

hosting his own
show on NBC?

Groundtruth: Nat King
Cole was 37 years old.

is an American
clothing company
Final answer:

I don’t know.

American clothing
company

ROI summary:

The object of
interest is a mural of
Nat King Cole, an
American singer and
musician.
Response(incorrect):
Nat King Cole was
31 years old when
he started hosting
his own show on
NBC, "The Nat
King Cole Show,” in
1956.

born on March 17,
1919, and he started
hosting his own
show on NBC in
1956. Therefore, he
was 37 years old
when he started
hosting his own
show on NBC.
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